Put3 Positively Regulates Proline Utilization in Candida albicans

نویسندگان

  • Walters Aji Tebung
  • Raha Parvizi Omran
  • Debra L. Fulton
  • Joachim Morschhäuser
  • Malcolm Whiteway
چکیده

The zinc cluster transcription factor Put3 was initially characterized in Saccharomyces cerevisiae as the transcriptional activator of PUT1 and PUT2, two genes acting early in the proline assimilation pathway. We have used phenotypic studies, transcription profiling, and chromatin immunoprecipitation with microarray technology (ChIP-chip) to establish that unlike S. cerevisiae, which only uses proline as a nitrogen source, Candida albicans can use proline as a nitrogen source, a carbon source, or a source of both nitrogen and carbon. However, a C. albicans put3 null mutant cannot grow on proline, suggesting that as in S. cerevisiae, C. albicans Put3 (CaPut3) is required for proline catabolism, and because the C. albicans put3 null mutant grew efficiently on glutamate as the sole carbon or nitrogen source, it appears that CaPut3 also regulates the early genes of the pathway. CaPut3 showed direct binding to the CaPUT1 promoter, and both PUT1 and PUT2 were upregulated in response to proline addition in a Put3-dependent manner, as well as in a C. albicans strain expressing a hyperactive Put3. CaPut3 directs proline degradation even in the presence of a good nitrogen source such as ammonia, which contrasts with S. cerevisiae Put3 (ScPut3)-regulated proline catabolism, which only occurs in the absence of a rich nitrogen source. Thus, while overall proline regulatory circuitry differs between S. cerevisiae and C. albicans, the specific role of Put3 appears fundamentally conserved. IMPORTANCECandida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker's yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae.

Like most microorganisms, the yeast Saccharomyces cerevisiae is prototrophic for riboflavin (vitamin B2). Riboflavin auxotrophic mutants with deletions in any of the RIB genes frequently segregate colonies with improved growth. We demonstrate by reporter assays and Western blots that these suppressor mutants overexpress the plasma-membrane riboflavin transporter MCH5. Frequently, this overexpre...

متن کامل

Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo.

The PUT3 gene product is a transcriptional activator required for expression of the enzymes of the proline utilization pathway. Using two methods of footprinting in vivo, we have determined that PUT3 protein is poised at the promoters of the genes encoding these enzymes and that proline-mediated induction modulates the activity of constitutively bound PUT3.

متن کامل

Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae.

A mutation has been identified that prevents Saccharomyces cerevisiae cells from growing on proline as the sole source of nitrogen, causes noninducible expression of the PUT1 and PUT2 genes, and is completely recessive. In the put3-75 mutant, the basal level of expression (ammonia as nitrogen source) of PUT1-lacZ and PUT2-lacZ gene fusions as measured by beta-galactosidase activity is reduced 4...

متن کامل

Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis

Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parap...

متن کامل

Genetics and physiology of proline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression.

A mutation resulting in inducer-independent expression of the proline-degradative enzymes was isolated in the yeast Saccharomyces cerevisiae. Strains carrying the mutation, put3, are partially constitutive for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase when grown on a medium lacking proline and are hyperinducible for both enzyme activities when grown on a proline-containi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017